Please check that this question paper contains 9 questions and 2 printed pages within first ten minutes.

EVENING

[Total No. of Questions: 09]

2 7 JUN 2022

[Total No. of Pages: 2]

Uni. Roll No. Brogram: B Tech (Batch 2018 onw

Program: B.Tech. (Batch 2018 onward)

Semester: 4th

Name of Subject: Mathematics - III

Subject Code: BSME-101

Paper ID: 16197

Time Allowed: 03 Hours

Max. Marks: 60

NOTE:

1) Parts A and B are compulsory

2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice

3) Any missing data may be assumed appropriately

Part - A

[Marks: 02 each]

Q1.

a) Find the complete solution of the differential equation $\frac{\partial^4 z}{\partial x^4} + \frac{\partial^4 z}{\partial y^4} = 0$

b) Classify the partial differential equation $x^2 \frac{\partial^2 u}{\partial t^2} + 3 \frac{\partial^2 u}{\partial x \partial t} + x \frac{\partial^2 u}{\partial x^2} + 17 \frac{\partial u}{\partial t} = 100u$

c) What do you understand by Chi-Square test as a test of goodness of fit?

d) State necessary and sufficient condition for function f(z) to be analytic.

e) Discuss the singularity of $f(z) = \frac{1}{z-a}$ at z = a.

f) Two cards are drawn from a well shuffled pack of 52 cards. Find the probability that they are both aces if the first card is not replaced.

Part - B

[Marks: 04 each]

 $\mathbf{Q2.} \quad \text{Solve } 2r - s - 3t = 5 \frac{e^x}{e^y}$

Q3. Determine analytic function w =u+iv whose real part $u = log \sqrt{x^2 + y^2}$

Q4. Solve the differential equation $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$

Q5. Find the Bilinear Transformation which maps z = 1, i, -1 into w = i, 0,-i

Q6. Find the coefficient of correlation for the following data N=10,

 $\bar{X} = 5.5, \bar{Y} = 4, \sum X^2 = 385, \sum Y^2 = 192, \sum (X + Y)^2 = 947$

EVENING

2 7 JUN 2022

Q7. The probabilities of X,Y, and Z becoming managers are $\frac{4}{9}$, $\frac{2}{9}$, $\frac{1}{3}$ respectively. The probabilities that Bonus scheme will be introduced if X,Y,Z become managers $\frac{3}{10}$, $\frac{1}{2}$, $\frac{4}{5}$ respectively. What is the probability that bonus scheme will be introduced?

Part - C

[Marks: 12 each]

Q8. A tightly stretched string with fixed point x = 0 and x = 1 is initially in a position given by $y = y_0 \sin^3 \frac{\pi x}{t}$, if it is released from rest from this position, find the displacement y(x,t).

The following table gives the number of days in 50 days period during which automobile accidents occurred in a certain part of a city. Fit a Poisson distribution to the data-

		1	2	13	4
No of accidents	0	1	2		
		10	0	14	11
No.of days	19	18	0	'	

Q9. Evaluate $\int_0^{2\pi} \frac{\cos 2\theta}{1 - 2p\cos\theta + p^2} d\theta, \ 0$

OR

A random sample of 9 boys had heights (inches) 45,47,50,52,48,47,49,53 and 51. Discuss the suggestion that the mean height in the population is 47.5 (Given the table value of t for 8 d.f. at 5% level = 2.306)
